ternyata ga gitu kawand…..begini ceritanya,
coba kita ambil contoh lain dulu, misalnya 2^5 : 2^2…..kita hitung dulu
2^5 = 2 x 2 x 2 x 2 x 2 = 32…..kemudian 2^2 = 2 x 2 = 4…..nah jadinya
2^5 : 2^2 = 32 : 4 = 8…..kalau kita perhatiin bilangan 8 ini juga ada
hubungannya dengan bilangan awal tadi, yaitu bilangan 2…..8 = 2^3…..nah
sekarang bilangan 3 itu dari mana asal muasalnya…..?ternyata dari
pangkat atas dikurangin pangkat yang bawah (pangkat pembagi) yaitu 5 – 2
= 3…..untuk bilangan yang lain juga begitu…..dapatlah kita sifat a^m : a^n = a^(m-n)…..
rumus itu bisa kita peroleh dengan coba2 masukin angka…..sekarang
kita akan coba masukin angka 2^4 : 2^4 = 2 x 2 x 2 x 2 : 2 x 2 x 2 x 2 =
16 : 16 = 1…..nah disini diperoleh hasilnya 1…..misalkan kita coba lagi
2^3 : 2^3 = 2 x 2 x 2 : 2 x 2 x 2 = 8 : 8 = 1…..dapat hasilnya 1
lagi…..dan lagi kalau kita masukkan pangkat atas bawah sama…..dapet
rumus a^n : a^n = 1…..padahal kalau digabung dengan rumus sebelumnya a^n : a^n = a^(n-n) = a^0 = 1…..dapatlah bahwa a^0 = 1…..
asyik kan…..dengan logika yang sederhana bisa mecahin teka-teki pangkat 0…..sekedar info aja deh…..semoga bermanfaat…..